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ABSTRACT

Plants and animals are often adorned with potentially conspicuous colours (e.g. red, yellow, orange, blue, purple).
These include the dazzling colours of fruits and flowers, the brilliant warning colours of frogs, snakes, and inverte-
brates, and the spectacular sexually selected colours of insects, fish, birds, and lizards. Such signals are often thought
to utilize pre-existing sensitivities in the receiver’s visual systems. This raises the question: what was the initial func-
tion of conspicuous colouration and colour vision? Here, we review the origins of colour vision, fruit, flowers, and
aposematic and sexually selected colouration. We find that aposematic colouration is widely distributed across ani-
mals but relatively young, evolving only in the last ~150 million years (Myr). Sexually selected colouration in ani-
mals appears confined to arthropods and chordates, and is also relatively young (generally <100 Myr). Colourful
flowers likely evolved ~200 million years ago (Mya), whereas colourful fruits/seeds likely evolved ~300Mya. Colour
vision (sensu lato) appears to be substantially older, and likely originated ~400–500 Mya in both arthropods and
chordates. Thus, colour vision may have evolved long before extant lineages with fruit, flowers, aposematism,
and sexual colour signals. We also find that there appears to have been an explosion of colour within the last
~100 Myr, including >200 origins of aposematic colouration across nine animal phyla and >100 origins of sexually
selected colouration among arthropods and chordates.

Key words: aposematism, colour, evolution, flower, fruit, frugivory, macroevolution, phylogeny, pollination, sexual
selection.
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I. INTRODUCTION

The living world today presents a dazzling array of colours
associated with diverse functions. Many plant species have
brightly coloured fruits that may be important for seed dis-
persal by animals, along with colourful flowers crucial for
insect pollination and reproduction. Among animals, numer-
ous species have bright colours that can warn potential
predators that they are venomous, toxic, or otherwise unpal-
atable, including poison frogs, coral snakes, and nudibranch
slugs. Many other animal species have conspicuous colours
that are sexually selected, such as the bright colours of some
dragonflies, spiders, fish, lizards, and birds.

How did this diversity of colours and functions arise? And
where and when? The answers to these questions are not
obvious. Many plants have colourful flowers that can attract
animal pollinators, and colourful fruits that can attract ani-
mal seed dispersers. Clearly, these colours evolved under
selection to signal to animals and not to other plants. But
why were animals able to see these colours in the first place?
What was the original function of colour vision (in the broad
sense: not every species with colour vision can distinguish
every colour)? Were there different initial functions in differ-
ent groups? When did colour vision evolve and when did
plants and animals first evolve conspicuous colours? What
was the sequence of origin among these different functions?
For example, in animals, was it for food first and then for
mating signals, with aposematic species later taking advan-
tage of colour sensitivities that first evolved for these other
functions? Or was there some other sequence? Or did these
functions evolve independently of each other?

Here, we make an initial attempt to address these largely
unanswered questions. We first outline different hypotheses
for the initial function of colour vision in animals. Then, to
address these hypotheses, we assess the distribution and ori-
gins of conspicuous colouration associated with each function
(aposematism, sexual signalling, pollination, frugivory) and
colour vision. In doing so, we present the first large-scale sys-
tematic review of aposematic colouration across animals and
provide other novel, large-scale analyses of these traits.

The five major topics synthesized here (colour vision, apo-
sematic colouration, sexual colour signals, fruit colour, flower
colour) have each been the subject of much separate
research. However, this research is somewhat fragmented,
and few studies explicitly addressed the overall interrelation-
ships among these topics. Nevertheless, some key studies that
spanned topics are important to mention (which we do here,
more-or-less chronologically). Allen (1879) suggested that
colour vision first evolved in animals in association with feed-
ing on plants (i.e. leaves, flowers, fruits) and later was utilized
for mating signals. Chittka (1996) tested whether colour
vision in bees pre-dated the evolution of flower colour using
a phylogenetic approach, and found that it did, possibly by

400 million years (Myr). Maximov (2000) discussed the orig-
inal function of colour vision in vertebrates and speculated
that it was for detecting predators in shallow water environ-
ments, where flickering illumination complicates vision with-
out colour perception. Gerl & Morris (2008) reviewed the
causes and consequences of colour vision in animals (but
not the questions raised here). Osorio & Vorobyev (2008)
assessed whether spectral sensitivities of birds, butterflies,
hymenopterans (bees and wasps), and primates matched
the reflectance spectra of their food plants or animal visual
signals. They concluded that they did not (except in butter-
flies), and suggested that colour vision evolved in association
with a “general purpose”, rather than specifically under
selection for detecting flowers, fruits, or mates. Similarly,
Osorio (2019) suggested that colour vision is similar across
diurnal, terrestrial vertebrates, rather than being fine-tuned
to different specific uses of colour in different species. Cuthill
et al. (2017) reviewed the biology of colour in general, and
Endler & Mappes (2017) listed many unanswered questions
about the evolution of colour patterns. Rojas et al. (2018)
reviewed aposematic signals that are also influenced by sex-
ual selection. Baden (2014) discussed the evolution of visual
systems in vertebrates, and suggested that the system used
in colour vision may have initially been important for naviga-
tion and motion detection. This is not a comprehensive list of
studies addressing multiple functions of conspicuous coloura-
tion. Nevertheless, it helps illustrate that relatively few indi-
vidual studies have considered the evolution of all these
functions.
We focus here on colours that help make part of an animal

or plant more visible. Conspicuousness depends on back-
ground colouration, the visual system of the animal sensing
that colour (or not), and many other potential factors
(e.g. Endler, 1990; Caves et al., 2024). We focus specifically
on red, yellow, orange, blue, and purple, which can
be conspicuous against many typical backgrounds
(e.g. ground, rocks, bark, leaves). We refer to these as
“conspicuous colours” as shorthand, recognizing that their
conspicuousness is conditional. Black, white, and green
can sometimes also be conspicuous, and can be used as
aposematic or sexual signals (e.g. Prudic, Skemp &
Papaj, 2006; Caro, 2009), but they are not our main focus
(nor are brown or grey). We also do not address ultraviolet
colouration: because of limited data availability, its inclu-
sion was impractical for the large-scale analyses here. Nev-
ertheless, ultraviolet colouration should be an important
topic for future studies.

II. HYPOTHESES

We describe five non-exclusive hypotheses for the initial
function of conspicuous colouration and colour vision
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(Fig. 1). Under the fruit-first hypothesis (Fig. 1), animals first
evolved visual sensitivity to conspicuous colours because of
plants signalling to frugivorous animals (e.g. mammals,
birds). Other functions then evolved that utilized the colour
sensitivities initially associated with fruit. For example, Rodd
et al. (2002) suggested that preferences of female guppies
(Poecilia reticulata) for males with orange patches evolved
because both males and females have an innate preference
for orange objects, possibly orange fruit. Similarly, Fernan-
dez & Morris (2007) found that trichromatic colour vision
(i.e. red–green vision) in primates evolved long before the
red colours of the skin and pelage used in sexual selection
and intra-specific communication, with colour vision possibly
evolving first to aid foraging on ripe fruit. Schaefer, Schae-
fer & Levey (2004) suggested that frugivorous birds are more
likely to have conspicuous colours (e.g. red, yellow, blue) than
insectivorous species, and that butterfly taxa that commonly
visit flowers are more likely to have red, yellow, and blue
colouration than those that do not. All three studies linked
their results to the sensory-bias hypothesis of sexual selec-
tion (e.g. Basolo, 1990; Ryan & Rand, 1990; Endler &
Basolo, 1998), the idea that mating preferences for

particular traits might evolve because of pre-existing
biases in sensory systems that evolved in a non-mating con-
text. We refer to this as the “fruit-first” hypothesis, but
note that colourful, fleshy, animal-dispersed seeds
(although not strictly fruits) also occur in gymnosperms.
We also note that there has been discussion over whether
fruit colours evolved primarily to signal to animals
(Willson & Whelan, 1990), but our impression is that the
preponderance of evidence supports this hypothesis (e.g.
Lom�ascolo & Schaefer, 2010; Valenta et al., 2018), even
if fruit colours can also have other functions.

The flower-first hypothesis (Fig. 1) is similar to the fruit-
first hypothesis, but suggests that colour vision first evolved
in the context of plants signalling to potential pollinators
(e.g. insects, birds) with conspicuous flower colours. The
mating-first hypothesis (Fig. 1) suggests colour vision evolved
first in association with detecting colourful mating signals in
conspecific animals.

The warning-first hypothesis (Fig. 1) proposes that con-
spicuous colours and colour vision evolved first through
aposematism, warning potential predators that the species
is venomous, toxic, or otherwise unpalatable. Note that this

Fig. 1. Diagrammatic illustration of the five hypotheses proposed here to explain the evolution of conspicuous colours in plants
and animals. The first four hypotheses (fruit-first, flower-first, warning-first, mating-first) suggest that colour vision first evolved
in association with one of these functions (seed dispersal, pollination, aposematism, mate choice), as indicated by the pair of
arrows. Colour vision then allowed the evolution of the other functions (as indicated by arrows from colour vision to these
other functions). The fifth hypothesis (generic colour vision hypothesis) posits that the initial evolution of colour vision was
not strongly associated with one of these four functions, but was instead used more generally (to detect shelter, food,
predators, landmarks, etc.). Note that there could be additional relationships among these variables that are not shown here
(e.g. between warning signals and mating signals). Plant and frog photographs from John J. Wiens. Bird photograph (used
with permission) by Kim Holzmann.
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hypothesis could also involve defence against fungivores by
fungi or against herbivores by plants.

A fifth hypothesis is that the initial function of colour
vision was more general, and not related to any of these
functions (generic colour vision hypothesis, or the “general
purpose” hypothesis of Osorio & Vorobyev, 2008). There
are several potential benefits of colour vision, and some
costs. Benefits include the potential to help visually distin-
guish objects, such as potential shelters and oviposition
sites, food items (e.g. live green versus dead brown leaves),
predators, and landmarks for phototaxis and navigation
(Maximov, 2000; Kelber, Vorobyev & Osorio, 2003; van
der Kooi et al., 2021; Baden, 2024a). Some authors have
suggested that there could also be costs to colour vision,
including reduced sensitivity and spatial resolution
(Kelber et al., 2003) and possibly increased energy con-
sumption (Niven & Laughlin, 2008). We acknowledge that
we use this hypothesis as a catch-all relative to the other
four: it could also be called the “none-of-the-above”
hypothesis. Further, although we call it the “generic” or
“general purpose” colour vision hypothesis, the initial
function of colour vision could be very specific (like preda-
tor avoidance; Maximov, 2000), just not related to apose-
matism, sexual signals, flowers, or fruit.

These five hypotheses could potentially be distin-
guished by reconstructing the relevant traits on time-
calibrated phylogenies and estimating which function is
the oldest. In some cases, these reconstructions can be
complemented by inferences from fossils: however, the
colouration of extinct taxa is generally difficult to infer
(Vinther, 2015). In the next section, we review the litera-
ture on each of these traits to estimate which is oldest.
Note that there may be different explanations for the ori-
gins of colour vision in different clades, and for different
components of colour vision (e.g. shortwave versus long-
wave, perceiving blue versus red). There might also be dif-
ferent patterns in different habitats (e.g. separate origins
of colour vision in the ocean and on land). We address
these ideas below. There are also other possible re-
lationships between these variables (e.g. between warning
and sexual signals; Rojas et al., 2018) that we do not
address here.

There are many reasonable cautions in the macroevo-
lutionary literature about reconstructing ancestral
states (e.g. Cunningham, Omland & Oakley, 1998).
Reconstructing rare states may be especially problematic
(Schluter et al., 1997). However, we think that the accu-
racy of this approach should be evaluated systematically
with simulations (not merely opinions, anecdotes, or case
studies), which can address whether a given method will
reconstruct ancestral states correctly and under what
conditions. Simulations suggest that these reconstructions
can be accurate, at least under some conditions (e.g.
Revell, 2014; King & Lee, 2015). This remains an area
that would benefit from further studies and improved
methods. In short, we use this approach, but have tried
to be appropriately cautious (especially for rare states).

We also complement this approach with information
from fossils, where possible.

III. TESTING THE HYPOTHESES

(1) Fruit-first hypothesis

Many angiosperms have conspicuously coloured, fleshy fruits
whereas most other plants lack them, and so determining the
age of colourful fruits in angiosperms is a crucial part of
addressing this hypothesis. The inferred ancestral state for
crown-group angiosperms will be determined most strongly
by the states present in those clades closest to that crown-
group root node. The three basal angiosperm clades
(Amborellaceae, Nymphaeales, Austrobaileyales) – those
closest to the angiosperm crown-group root node – all have
fleshy fruits (Fleming & Kress, 2011). We reviewed the fruit
colours of these three clades (see online Supporting Informa-
tion, Dataset S1; all data sets and other supporting informa-
tion are also available on figshare at: https://figshare.com/
s/cce1288f875902483294). Specifically, we performed Goo-
gle Scholar searches on 2–3 July 2023 for each genus in these
clades, using the name of each genus and “fruit color” as key
words. Amborella trichopoda is the sister group to other living
angiosperms, and therefore the most influential in determin-
ing the potential fruit colour of the ancestor of living angio-
sperms. This species has red fruit. There is considerable
variation in fruit colour among Nymphaeales, including
black, brown, green, red, white, and yellow. In Austrobai-
leyales many genera have red or orange fruit (Austrobaileya,
Kadsura, Schisandra, Xymalos), whereas others have brown or
green fruit (Illicium, Trimenia). Overall, it seems plausible that
the most recent ancestor of all living angiosperms (i.e. crown
group) had colourful fruit (e.g. red). We do not know when
fruits evolved along the branch length leading to the earliest
split among living angiosperms (crown-group node), but
fruits should be at least as old as this ancestral node.
How old was that node? There has been considerable

debate about the crown-group age of angiosperms. Sauquet,
Ramírez-Barahona & Magall�on (2022) reviewed these esti-
mates and showed that the majority of recent estimates
(2015–2021) were in the range ~200–250 million years ago
(Mya), including estimates from time-calibrated molecular
phylogenies (e.g. Magall�on et al., 2015; Ramírez-Barahona,
Sauquet &Magall�on, 2020; Zhang et al., 2020) and fossil data
alone (Silvestro et al., 2021). However, some studies provided
younger estimates of ~150 Mya, whereas one was substan-
tially older than ~250 Mya (Sauquet et al., 2022). Overall,
we consider the crown-group age of angiosperms likely to
be ~200 Mya. Note that a recent phylogenomic study of
angiosperms assumed possible ages of 154 and 247 Mya
but did not infer which was more likely (Zuntini et al., 2024).
Yet, fruit-like structures also occur in gymnosperms (reviewed

by Herrera, 1989), and may be even older. Animal-dispersed
seeds with fleshy tissue occur in all four major clades of extant
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gymnosperms, including Cycadales (Cycas, Zamia, Macroza-

mia), Gingkoales (Gingko), Gnetales (Ephedra, Gnetum), and
Coniferales. In Coniferales, animal-dispersed seeds are
absent in Pinaceae, Taxodiaceae, and Araucariaceae but
present in Taxaceae (Taxus, Torreya), Cephalotaxaceae
(Cephalotaxus), Podocarpaceae (Podocarpus, Dacrydium), and
Cupressaceae (Juniperus). The fossil record shows that
animal-dispersed seeds date back to the Jurassic and copro-
lites show that these seeds were eaten by animals
(Herrera, 1989). Gymnosperms with fleshy seeds are thought
to have existed continuously since the late Carboniferous
(307–299 Mya; Herrera, 1989). Therefore, fruit-like seeds
should be at least ~300 Mya.

Were these fruit-like seeds colourful? To address this ques-
tion, we examined colours of animal-dispersed, fleshy seeds
and seed cones among extant gymnosperms (Dataset S2), uti-
lizing The Gymnosperm Database (https://www.conifers.
org/zz/gymnosperms.php). These structures were predomi-
nantly red, orange, and yellow, including those in most
cycads, gingkos, Ephedra, Welwitschia, Cephalotaxus, Taxus,
and Podocarpus. However, in Juniperus they can be blue or pur-
ple, and other colours were present in some other taxa
(e.g. many green Torreya and brown Dacrydium). In short, the
fleshy seeds of many extant gymnosperms are conspicuously
coloured.

The age of frugivores might also be relevant to the fruit-
first hypothesis. Tiffney (2004) suggested that animal dis-
persal of fleshy seeds started with gymnosperms. They sug-
gested that there may not have been a group of specialized
vertebrate frugivores among extinct groups. Instead, there
may have been more diffuse co-evolution between plants
and their non-specialist seed dispersers.

Based on a review of seed sizes in the fossil record, Eriksson
(2016) inferred that fleshy fruits (i.e. large seeds) became fre-
quent 70–80 Mya, and that the range of seed sizes also
increased 70–80 Mya. Eriksson (2016) suggested that this
diversification of fruits may have been associated with multi-
tuberculate mammals, not modern frugivorous bird or mam-
mal groups, which are too young. Specifically, they estimated
the age of each major group of extant frugivores (for birds
and mammals). These included the bird orders Caprimulgi-
formes, Coliiformes, Columbiformes, Coraciformes, Passeri-
formes, Piciformes, Psittaciformes, and Trogoniformes,
ranging in age from ~20 to 60 Mya. Mammals included
rodents (~50 Mya), primates (~50 Mya), and frugivorous
bats (~40 Mya). By contrast, multituberculate mammals
are older (originating ~80–100 Mya but extinct by
40 Mya). Correa et al. (2015) proposed that there have been
interactions between fruit and freshwater fish in the Neotrop-
ics over the past 70 Myr.

In summary, colourful, animal-dispersed seeds may be
~200 Myr old in angiosperms, and ~300 Myr old in
gymnosperms. Furthermore, they might be shared
between gymnosperms and angiosperms through common
ancestry. This seems plausible given their presence in the
sister-group to other gymnosperms, Cycadales + Gingkoales
(Ran et al., 2018). If so, then colourful animal-dispersed seeds

may be at least ~330–377 Myr old, based on the estimated
timing of the split between gymnosperms and angiosperms
(Ran et al., 2018; Zhang et al., 2020). We performed a limi-
ted set of maximum-likelihood analyses to test whether
animal-dispersed seeds may have evolved in the common
ancestor of gymnosperms and angiosperms (Appendix S1;
Datasets S3–S5; Table S1; Figs S1–S4). The results were
somewhat equivocal, with no strong, consistent support for
presence or absence in this ancestor. Therefore, we tenta-
tively consider these structures to have appeared ~300
Mya, but possibly ~330–377 Mya.

(2) Flower-first hypothesis

Flowers are unique to angiosperms, and the colouration of
the ancestral flowermay hinge on those in the three basal angio-
sperm clades (Amborellales, Nymphaeales, Austrobaileyales).
Thien et al. (2009) inferred that conspicuously coloured flowers
evolved in the ancestor of angiosperms above Amborellaceae.
Specifically, flowers of Amborella are cream-coloured, whereas
those of Nymphaeales span a variety of colours (including red,
pink, yellow, and white; with blue-purple being especially fre-
quent), as do flowers of Austrobaileyales (including red, yellow,
and white). Thus, the oldest clade in which conspicuously
coloured flowers presumably evolved is likely ~200 Myr old,
similar to the angiosperm root.

Ancestral-state reconstructions suggest that the crown-
group ancestor of angiosperms (and the basal clades) was
ancestrally insect pollinated (Stephens et al., 2023). Among
these basal clades, the most frequent pollinators belong to
Diptera (flies), but with pollination by Coleoptera (beetles)
and Hymenoptera also widespread (Thien et al., 2009). Ana-
lyses of fossil insects and their associated pollen grains suggest
that insect pollination is at least 163 Myr old (Pena-Kairath
et al., 2023). Surprisingly, these analyses imply that insect pol-
linators before ~80 Mya were pollinating gymnosperms, not
angiosperms. Gymnosperm pollinators in the fossil record
include Coleoptera, Diptera, Mecoptera, Neuroptera, and
Thysanoptera. Some extant gymnosperms also have insect
pollination, including some Cycadales and Gnetales. Con-
spicuous colours may play a role in insect pollination of some
gymnosperms, but this seems to be limited (Rudall, 2020).

There have also been phylogenetic analyses of pollination
from the insect perspective. For example, for Hymenoptera,
Peters et al. (2017) inferred the earliest pollen collection
among extant lineages on a branch that is ~110–125 Myr
old (ancestor of bees, Anthophila).

In summary, there has been insect pollination of conspicu-
ously coloured flowers for possibly ~200–250 million years.
Furthermore, insect pollination may have begun with gym-
nosperms rather than angiosperms.

(3) Warning-first hypothesis

Based on a novel literature review (details in Appendix S2),
we found that aposematism is widely distributed across ani-
mals (Fig. 2; Dataset S6). For example, we found
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documented aposematism in the phyla Annelida (one family
of clitellates and five of polychaetes), Arthropoda (see below),
Bryozoa, Chordata (see below), Cnidaria, Echinodermata,
Hemichordata, Mollusca (one family of bivalves, one of
cephalopods, and 13 of gastropods), and Platyhelminthes
(one family).

In Arthropods, aposematism occurs in decapod and iso-
pod crustaceans, arachnids (at least seven families of spiders
and 16 of mites), myriapods (one family of centipedes and
eight of millipedes), and many orders of insects, including
Blattodea (cockroaches; two families), Coleoptera (18),
Diptera (three; all Batesian mimics), Hemiptera (19),
Hymenoptera (27), Lepidoptera (25), Mantodea (seven),
Neuroptera (one), Odonata (one), Orthoptera (five),
Phasmatodea (five), Plecoptera (two), Thysanoptera
(one), and Trichoptera (one).

To estimate the number and oldest origins of aposematism
among invertebrates, we first mapped aposematism on three
time-calibrated phylogenies of animals (Datasets S7–S9).
Details of the methods and results of these analyses are

provided in Appendix S3 and Table S2 (data in Dataset
S10, code in Dataset S5). Very few nodes (among families)
were consistently reconstructed as being aposematic
(Figs S5–S13), suggesting that the origins of aposematism
are relatively young. One potential clade included seven lep-
idopteran families (Papilionidae, Pieridae, Hedylidae,
Hesperiidae, Lycaenidae, Nymphalidae, and Riodinidae)
but this depended on the coding method and reconstruction
model. Aposematism was present in all these families except
Hedylidae. The crown-group ancestor of this clade of seven
families was inferred to be ~105Myr old. Some analyses also
showed strong support for aposematism being present in the
ancestor of Acrididae and Romaleidae within Orthoptera.
The crown-group ancestor of this clade is estimated to be
~43 Myr old. However, these reconstructions should be
taken with considerable caution, since aposematism was not
necessarily present in all or most species in these families.
Therefore, aposematism may be even younger than sug-
gested by these reconstructions.
These ancestral-state reconstructions suggest that most

occurrences of aposematism across phyla and among arthro-
pod families evolved independently of each other. Thus,
there were >140 origins of aposematism across arthropods,
almost all within the last ~100 Myr. Furthermore, there
might be many more origins of aposematism among genera
within families and among species within genera.
Under ideal circumstances, we would also reconstruct the

timing of the origin of aposematism with fossils. However,
fossils do not generally preserve colour. Nevertheless, apose-
matism has been inferred in some fossil insects, although the
exact colours are not always clear. These include: (i) a new
genus of orthopterans (Elcanidae; Monitelcana) with black
and yellow dorsal colouration from amber from 99 Mya
(Xu et al., 2022); (ii) a cockroach fromMyanmar amber (Bala-
tronis cretacea) from 98 Mya (Smídova & Lei, 2017); (iii) an
older cockroach from this genus (B. libanensis) from Lebanese
amber from 130Mya (Sendi & Azar, 2017); and (iv) a 47Myr
old moth fossil with yellow wings (McNamara et al., 2011),
with colours reconstructed using information from ultra-
structure. This moth family (Zygaenidae) contains apose-
matic species today. It has been suggested that irridescent
colouration was present in Cambrian fossils (Canadia, Mar-

rella, Wiwaxia) from ~515 Mya, which was possibly apose-
matic (Parker, 1998). However, this is not a colouration
that we focus on here, and the link to aposematism was highly
speculative.
Within Chordata, aposematism occurs in Tunicata

(two families of ascidians) and Vertebrata (Dataset S11).
Aposematism appears to be uncommon in fish, especially
given their high species richness. For chondrichthyans, we
found reports only in two families (a dasyatid ray and a ste-
gostomatid shark). Across actinopterygians (including ~50%
of vertebrate species), we found reports of aposematism in
only eight families, including among catfishes, clownfishes,
and lionfishes. Within tetrapods, aposematism is relatively
frequent in amphibians and snakes and more uncommon in
birds, lizards, and mammals (Emberts &Wiens, 2022). Based

Fig. 2. Distribution of aposematism, colourful sexual signals,
and colour vision among animal phyla. Boxes do not indicate
the absolute or relative time when these traits originated on a
branch. Traits may be more widely distributed than shown
here. Tree is from Wiens (2015). A total of 28 of 34 animal
phyla are shown: the six missing phyla also seem to lack these
three traits. Note that there has been some controversy over
whether ctenophores are the sister group to all other animals
or not, the tree shown is based on the hypothesis that they are.

Biological Reviews (2024) 000–000 © 2024 Cambridge Philosophical Society.
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on ancestral reconstructions from Emberts & Wiens (2022,
their Fig. 3), we estimated ~40 origins of aposematism in
amphibians, ~21 in snakes, one in lizards, one in mammals,
and ~15 in birds. These numbers were based on liberal
coding of aposematism but not counting origins that did
not extend to the present day nor ones that were also sexual
signals. These numbers are presumably underestimates,
since <10% of described amphibian and snake species were
included.

We also used those reconstructions to examine the oldest
origins of aposematism within tetrapods. The oldest inferred
origin within snakes was in a clade linking the cobra family
(Elapidae) and Pseudaspididae (clade crown age = 43
Mya). However, a more conservative estimate may be the
ancestor of Elapidae (crown age = 33 Mya), a clade with
many aposematic species (e.g. coral snakes, kraits). Within
amphibians, the oldest inferred origin of aposematism is
within poison frogs (Dendrobatidae), in a clade (crown
age = 78 Mya) including Phyllobates and Dendrobates (among
other genera). There are also relatively ancient origins of
aposematism in spadefoot toads (Scaphiopodidae; crown
age = 64 Mya), fire-bellied toads (Bombina; crown age = 27
Mya), and within salamanders, including within Plethodontidae
(Plethodon, crown age = 56 Mya; the clade uniting Gyrinophilus,
Pseudotriton, and Eurycea, crown age = 38Mya) and Salamandri-
dae (newts; clade of Notophthalmus + Taricha, crown age = 41
Mya). All these estimated ages are subject to change, since
they depend on the tree used, taxon sampling, and other fac-
tors. For example, our inference of the oldest warning col-
ouration in snakes was a single origin in the clade linking
the families Elapidae and Pseudaspididae. But a recent study
suggests >20 origins of warning colouration just within ela-
pids (Kojima et al., 2024), almost as many as we inferred
across all snakes. Importantly, the more detailed analysis of

Kojima et al. (2024) further supports our initial conclusion
that the origins of warning colouration have occurred repeat-
edly and are relatively young. We predict that more detailed
analyses in other groups will also show large numbers of rel-
atively recent origins of aposematism.

In summary, these results suggest >200 origins of conspic-
uous aposematic colouration in animals. Furthermore, most
of these origins were within the last ~100 Myr.

We focused here on aposematic animals. Although many
fungi are poisonous and some have brightly coloured fruiting
bodies, there is no significant association between colouration
and poison that would indicate aposematism (Guevara &
Dirzo, 1999; Sherratt, Wilkinson & Bairn, 2005). However,
one genus has been proposed as aposematic (ergot, Claviceps;
Lev-Yadun & Halpern, 2007). There is also some evidence
for aposematism in plants, but much of this is controversial,
such as the function of red-yellow fall foliage (review in Lev-
Yadun, 2009). This is an area in need of further research,
but aposematic fungi and plants seem unlikely to be older than
the oldest origins of aposematism in animals.

(4) Mating-first hypothesis

We examined the distribution of sexually selected colour sig-
nals across animals (Fig. 2). We used two recent surveys of
sexually selected traits across animals (Wiens & Tuschhoff,
2020; Tuschhoff & Wiens, 2023). Those studies reviewed
traits shown to increase mating success, either experimentally
or observationally. However we rechecked the original stud-
ies to evaluate if the sexually selected colours were those we
focused on here (i.e. red, yellow, orange, blue, purple). Based
on those studies, these sexually selected colours were present
only in arthropods and chordates (the only phyla known to
have colour vision, see below). In arthropods, sexual selection
on these colours has been documented in spiders (Salticidae)
and in insects, including hymenopterans (wasps), lepidop-
terans (butterflies), odonates (dragonflies and damselflies),
and orthopterans (grasshoppers). We do not rule out their
potential occurrence in other groups also. In chordates, they
occur in actinopterygian fish and tetrapods (see below).

To estimate the oldest origins of these sexually selected col-
ours, we first mapped them on three large-scale animal phy-
logenies (detailed methods in Appendix S4; Dataset S12).
Based on these analyses (Table S3, Figs S14–S16), we
inferred no instances in which these colours evolved in the
ancestors of any among-family clades (implying that they
generally evolved within families instead). Further research
might show deeper origins in some groups. For example,
dichromatic colouration has been documented in additional
families of odonates (C�ordoba-Aguilar et al., 2015). Never-
theless, the overall pattern across animals seems to be one
of relatively shallow evolutionary origins rather than deep
ones. We also explored these patterns in more detail within
chordates.

Within chordates, we utilized recent large-scale analyses of
the evolution of sexually dichromatic colouration in actinop-
terygian fish (Miller, Mesnick & Wiens, 2021) and tetrapods

Fig. 3. Summary of the oldest origins of conspicuous
colouration in animals and plants and their different functions,
along with colour (col.) vision. Dark blue bars indicate the
oldest age (extending to the present day), whereas light blue
indicates the range of possible dates. The data and sources are
provided in Table 1.
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(Emberts &Wiens, 2022) to estimate the oldest origins of sex-
ually selected colouration in these groups. There is abundant
evidence for sexual selection on conspicuous, sexually
dichromatic colours in actinopterygian fish, lizards, birds,
and some mammals (e.g. Hill, 1991; Kodric-Brown, 1998;
Olsson, Stuart-Fox & Ballen, 2013; Dale et al., 2015).

In actinopterygian fish, dozens (>60) of origins of sexual
dichromatism were inferred. Miller et al. (2021) estimated
the evolution of sexually dimorphic colouration across acti-
nopterygian phylogeny using maximum likelihood (their
Fig. 1). They reconstructed the ancestor of Actinopterygia
and most major clades within it as being sexually monomor-
phic (e.g. Teleostei, Elopomorpha, Acanthomorpha, Perco-
morpha, Eupercaria, Ovalentaria). There were also some
clades that were reconstructed as sexually dichromatic,
including parrotfishes, darters, cichlids, and guppies. These
clades are known to have conspicuous colouration associated
with mating that is thought to be sexually selected (reviews in
Kodric-Brown, 1990, 1998). The oldest clades that were
reconstructed as having sexually dichromatic colouration
included: (i) the clade of Beloniformes (mostly marine) +
Cyprinodontiformes (mostly freshwater; including guppies),
with a crown age of 97 Mya; (ii) Anabantiformes (freshwater;
including bettas), crown age = 81 Mya; (iii) Labriformes
(marine; including parrotfish), crown age = 80 Mya; (iv)
Cichlidae (freshwater; including African Rift Lake cichlids),
crown age = 68 Mya; and (v) Percidae (freshwater; including
the brightly coloured darters, Etheostoma), crown age = 44
Mya. Note that sexual dichromatism need not involve con-
spicuous colours or sexual selection, but there was evidence
for both in at least some species in these clades.

In tetrapods, there were numerous origins (~28) of sexu-
ally dichromatic and potentially conspicuous colouration
inferred in lizards based on stochastic mapping (Fig. 2 of
Emberts &Wiens, 2022), and many more in birds (~59), with
fewer inferred in mammals (three) and amphibians (~14). In
lizards, the oldest origins of sexually dichromatic colouration
were in the ancestor of pleurodont iguanian lizards (crown
age = 81 Mya; including phrynosomatid lizards, Anolis, and
others). The next oldest was a related iguanian clade within
the family Agamidae (dragons; specifically, the clade uniting
subfamilies Agaminae and Draconinae; crown age = 81

Mya). The third was the ancestor of Teiidae (crown
age = 57 Mya). All the estimated origins in birds were sub-
stantially younger, with none older than 30 Mya. The oldest
origins were in Phasianidae (pheasants, peafowl, and relatives;
crown age = 29 Mya) and the clade uniting Chloropseidae
and Dicaeidae (leafbirds and flowerpeckers; crown age = 27
Mya). In amphibians and mammals, all origins of sexually
dimorphic conspicuous colouration were within a single sam-
pled species.
All these estimates should be taken with caution. For

example, as noted above, the species-level sampling within
tetrapods was far from comprehensive. Nevertheless, they
do suggest that there have been >100 origins of sexually
selected conspicuous colouration across animals, which all
appear to be relatively recent (within the last ~100 Myr).
We suspect that greater taxon sampling will yield many more
origins that are even more recent.
There is some fossil evidence regarding the antiquity of

potential sexually selected colouration. Specifically, Li et al.
(2010) found evidence for rufous (red-brown) plumage col-
ouration on the head crest of a feathered non-avian theropod
dinosaur (Anchiornis huxleyi) from the Jurassic of China, a dino-
saur that is ~160 Myr old (Liu et al., 2012). Sexual selection
was considered one possible explanation for this colouration,
especially since the reddish feathers were likely used for dis-
play (Vinther, 2020). This case serves as an important
reminder that sexually selected colouration (and other traits)
can arise in clades that subsequently go extinct, leaving no
present-day descendants. Thus, the age of the oldest origin
of these traits might be underestimated by using ancestral
reconstructions from living taxa.

(5) Generic colour vision hypothesis

Another hypothesis is that the initial evolution of colour
vision was not tightly associated with any of the preceding
functions (Fig. 1). To test this idea, it is important to know
when colour vision evolved in relation to these other func-
tions. However, it is not entirely clear which animals have
colour vision and which do not, and if they do, which colours
they can discriminate. Kelber et al. (2003) reviewed beha-
vioural evidence for colour vision across animals (but not

Table 1. Summary of the oldest inferred origins of conspicuous colouration in animals and plants and their different functions, along
with colour vision.

Trait Oldest age Source

Fruit �300–377 Mya Gymnosperm fossil record (�300Mya) or age of gymnosperm + angiosperm clade (330–377Mya)
Flowers �200 Mya Approximate age of clade uniting Nymphaeales with other angiosperms (�200 Mya)
Aposematism �105–130 Mya Butterfly clade (105 Mya) and cockroach fossil (130 Mya)
Sexual colouration �100 Mya Clade in fishes (Beloniformes + Cyprinodontiformes)
Colour vision �500–550 Mya Arthropoda (Fleming et al., 2018); but perception of red might be considerably younger

�420–500 Mya Chordata: older estimate is from Hagen et al. (2023), but might go back only to osteichthyans
instead (450 Mya)

For each function, we give the oldest estimated age, based on evidence from ancestral reconstructions and/or fossils. For some estimates we
give a range of dates to reflect the uncertainty in these estimates: details are given in Section III.

Biological Reviews (2024) 000–000 © 2024 Cambridge Philosophical Society.
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necessarily specifying which colours could be detected). They
found behavioural evidence for colour vision in many arthro-
pods. These included mites, spiders, decapod crustaceans,
branchiopod crustaceans, and insects, including dipterans,
orthopterans (grasshopper), hemipterans (aphids), hymenop-
terans, and lepidopterans. They also found evidence in many
vertebrates, including ray-finned fish, amphibians, mam-
mals, squamates (specifically lizards), turtles, and birds. They
did not list animals in which colour vision was considered
absent. Booth (1990) suggested that colour vision was absent
in molluscs, crocodilians, and snakes (but regarding snakes
see Hagen, Roberts & Johnston, 2023). This still leaves most
animal phyla in limbo. However, many animal phyla lack
eyes and photoreceptors (review in Jezkova & Wiens, 2017;
their Appendix A), which makes the absence of colour vision
seem likely. Eyes and photoreceptors seem to be lacking
entirely in the phyla Brachiopoda, Ctenophora, Entoprocta,
Gastotricha, Gnathostomulida, Hemichordata, Nemertea,
Phoronida, Placozoa, Porifera, Priapulida, andXenoturbellida.
Well-developed eyes are found in Arthropoda, and in Annelida
(Sedentaria), Chordata (present in subphylum Vertebrata
but absent in subphyla Cephalochordata and Tunicata),
and Mollusca (present in Cephalopoda, and some Bivalvia
and Gastropoda). Overall, colour vision (Fig. 2) appears to
be confined to arthropods and vertebrates (Fleming
et al., 2018). In the following paragraphs, we address its evo-
lution within both of these phyla, but we acknowledge that
colour vision might be found within other phyla also.

Within arthropods, colour vision (including short,
medium, and long-wave reception) is present in the two
major living clades (Chelicerata: the clade including spiders
and mites; and Mandibulata: the clade including myriapods,
crustaceans, and insects; Giribet & Edgecombe, 2019).
Therefore, colour vision may have evolved in the ancestor
of extant arthropods, which lived ~550–500 million years
ago, as suggested by recent analyses (Fleming et al., 2018)
and an older study (Chittka, 1996). On the other hand, there
are also major arthropod clades that appear to lack colour
vision (e.g. myriapods, pycnogonids), but these may represent
secondary losses (Fleming et al., 2018). An origin of trichro-
matic colour vision in the crown group of arthropods
(or before) was inferred based on opsin duplications and the
sensitivities of these opsins (Fleming et al., 2018).

Colour vision may be relatively old within insects, possibly
as old as winged insects (Pterygota). The crown-group ances-
tor of Pterygota is ~400 Myr old (Misof et al., 2014). This
clade spans odonates (with well-documented sexually
selected colouration), along with most other insect species
(e.g. flies, beetles, wasps, true bugs). However, the situation
may be more complex (Appendix S5; Table S4; Datasets
S13 and S14). We inferred the evolution of colour vision in
insects based on the summary data on spectral sensitivity
in van der Kooi et al. (2021). These analyses suggest that
the ability to see colours in the blue–purple spectrum was
most likely present in the ancestor of Pterygota (Figs S17
and S18). However, the ability to see colours in the red–

yellow spectrum was reconstructed as having evolved more
recently (Fig. S19), and may have evolved independently in
Odonata, Hymenoptera, Coleoptera, and Lepidoptera, with
multiple origins likely within many of these orders also (see
Fig. 2 of van der Kooi et al., 2021).

Colour vision in vertebrates may be similar in age to that
in insects. Hagen et al. (2023) summarized the evolution of
opsins considered relevant to colour vision among major ver-
tebrate clades, based on a phylogeny, the types of opsins pre-
sent in the sampled taxa, and the peak sensitivity of those
opsins to different wavelengths of light. They suggested that
the ability to detect red, purple, blue, and green colour was
present in the ancestor of living vertebrates, and was main-
tained in many lineages to the present day (e.g. lampreys,
lungfish, ray-finned fishes, lizards, birds; their Fig. 2). This
ancestor is thought to be ~500 Myr old (e.g. Erwin
et al., 2011). However, different components of colour vision
were lost in various lineages, such as detection of red
(in hagfishes, coelacanths, and some mammals), blue
(in hagfishes, sharks, coelacanths, mammals), and purple
(in hagfishes, chondrichthyans, coelacanths, turtles, and
some mammals). Amphibians were not included in their
reconstructions, but frogs and salamanders that have been
tested can detect reds, blues, and greens (Przyrembel,
Keller & Neumeyer, 1995; Kelber, Yovanovich &
Olsson, 2017; Rozenblit & Golitsch, 2020). Caecilian
amphibians lack colour vision (Mohun et al., 2010), but their
visual systems are highly reduced overall.

In summary, in vertebrates the ability to see red may
extend back to the ancestor of gnathostomes (jawed verte-
brates) or osteichthyans (bony vertebrates), if not earlier.
The crown-group age of both groups is ~450 Mya (Irisarri
et al., 2017). Similarly, the ability to see blue likely extends
back at least to the ancestor of osteichthyans or choanata
(lungfish + tetrapods; ~420 Mya; Irisarri et al., 2017). Again,
Hagen et al. (2023) suggested that both evolved in the ances-
tor of vertebrates (~500 Mya), based on patterns of opsin
duplications and their spectral sensitivities (see also
Baden, 2024a).

A related question is where colour vision evolved, not
merely when. Reconstructions of ancestral states across ani-
mals suggest that all the relevant outgroups to vertebrates
are ancestrally marine (e.g. see Figs S1–S3 of Wiens, 2015),
including Echinodermata + Hemichordata, Chordata, and
the chordate subphyla Tunicata and Cephalochordata
(Rom�an-Palacios, Moraga-L�opez & Wiens, 2022). Further-
more, within Vertebrata, the basal extant lineages are either
marine (hagfishes, chondrichthyans, coelacanths), or partly
marine (lampreys, ray-finned fishes). Therefore, colour vision
in vertebrates most likely evolved in the marine environment,
not on land.

For arthropods, the habitat of the crown-group ancestor is
somewhat unclear. Some studies have suggested that this
ancestor was marine, with separate invasions of terrestrial
environments by arachnids, myriapods, and hexapods
(Rota-Stabelli, Daley & Pisani, 2013; Lozano-Fernandez
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et al., 2016). Incorporating fossil ancestors of living arthro-
pods also implies a marine ancestor (Fleming et al., 2018).
On the other hand, these studies lacked explicit ancestral
reconstructions, and studies that included these reconstruc-
tions inferred a terrestrial ancestor (Wiens, 2015; Rom�an-
Palacios et al., 2022). Regardless, these studies agree that
the ancestor of insects was ancestrally terrestrial.

IV. SYNTHESIS

(1) Which hypothesis prevails?

Our review suggests that colour vision (sensu lato) may be sub-
stantially older than the conspicuous colours associated with
aposematism, sexual signals, fruit, or flowers (Fig. 3; Table 1).
Trichromatic colour vision is widespread in arthropods, and
has been inferred to have originated ~500–550 Mya
(Fleming et al., 2018). In vertebrates, trichomatic colour
vision may be ~420–500 Myr old (Hagen et al., 2023). These
origins pre-date the oldest inferred origins of conspicuous
aposematic and sexual colouration (both <140 Mya), and
flowers or pollinators (~140–250 Mya). Fruit (sensu lato) may
be more ancient, and colourful fruit may have been continu-
ously present for the past ~300–380 Myr. Yet, fruit is still
substantially younger than the oldest inferred origins of col-
our vision (~420–550 Mya). Overall, these results seem to
support the generic colour vision hypothesis, as suggested
by Maximov (2000) and Osorio & Vorobyev (2008).

Nevertheless, wemake twomain caveats regarding this con-
clusion. First, researchers have tended to infer relatively deep
origins for trichromatic colour vision based on limited taxon
sampling of extant species (Fleming et al., 2018; Hagen
et al., 2023), often based on patterns of gene duplication (rather
than presence/absence reconstructions). There are some stud-
ies that document its absence, but these are often inferred to be
losses. There might also be different patterns depending on
which aspect of colour vision is considered (e.g. deep origins
for blue perception, more recent origins for red vision).

Second, we focused on trait origins that persisted to the
present day. Some types of traits might appear to be rela-
tively young because they do not last for long periods of time,
even if they have been arising (and disappearing) continu-
ously over hundreds of millions of years. For example, fleshy
animal-dispersed seeds appear to be >300 Myr old, but no
extant, primarily frugivorous lineages seem to be >60 Myr
old (Eriksson, 2016). Older frugivorous lineages may have
existed but may not have persisted to the present day
(or older lineages might not be fruit specialists). Yet, conspic-
uous aposematic colouration has been inferred in some fossil
insects, and the oldest ages of aposematism in these cases are
not substantially older than the oldest inferences from living
taxa. Furthermore, if a trait (e.g. aposematism, sexual col-
ouration) had been arising and disappearing for hundreds
of millions of years, one might expect a few older instances
to remain today.

In summary, our results tentatively support the generic
colour vision hypothesis, but (given these and other caveats)
this should be seen only as an initial attempt to answer this
question. Given these issues, it should be obvious that the
generic colour vision hypothesis was not known to be true
prior to our study (even if we do support it). Instead, support-
ing this hypothesis requires quantitative comparison to the
competing hypotheses, and some uncertainty still remains.
How might future studies resolve this uncertainty?

Improved reconstructions of the evolution of colour vision
in arthropods and chordates would be valuable, especially
those incorporating data on different components of colour
vision and distinguishing gains and losses. Reconstructions
for the alternative hypotheses could also be improved
(e.g. more comprehensive trees, alternative reconstruction
methods), but these hypotheses seem unlikely to be supported.
Last but not least, researchers could try to make the generic
colour vision hypothesis more specific, by identifying more
specific functions associated with the early evolution of colour
vision in arthropods and chordates. To do this, it might help to
look for less-developed colour vision in ecologically relevant
taxa outside arthropods and chordates, to see if they might
offer useful model(s) for the early evolution of colour vision.

(2) Other patterns: the recent colour explosion and
the ubiquity of warning signals over sexual signals

Our results suggest two other interesting patterns. First, there
appears to have been an explosion of conspicuous warning
and sexual colour signals in the past ~100 Myr. As described
above, there were >60 separate origins of sexually dichro-
matic colouration in ray-finned fish in the last 100 Myr and
>100 separate origins in tetrapods (mostly in birds). For
aposematism, there were at least 78 origins of conspicuous
aposematic colouration in tetrapods (especially amphibians)
all within the last 100Myr. Yet, ray-finned fish and tetrapods
are old enough that much older origins could have been
inferred (i.e. tetrapods are ~350 Myr old; ray-finned fish
~320–420 Myr old; Near et al., 2012; Irisarri et al., 2017).
Similarly, across all animals, we inferred few origins of apose-
matic colouration much older than 100 Myr. But conspicu-
ous aposematic colouration was present in 119 insect
families (across 14 orders), 23 arachnid families, 15 mollusc
families, and 6 annelid families, across >800 Myr of animal
evolution. Given that we inferred very few cases in which
aposematic colouration was shared among these families
due to shared ancestry, most of these occurrences of apose-
matism likely represent separate origins within families.
Thus, these patterns in invertebrates are consistent with a rel-
atively recent burst in the origins of aposematic colouration.
It is also notable that the last ~100 Myr corresponds to the
period in which angiosperms (i.e. with colourful fruits and
flowers) came to dominate terrestrial plant communities
(Knoll, 1986), fruit size diversified (Eriksson, 2016), and most
extant frugivorous lineages originated (Eriksson, 2016).
These recent, numerous origins of warning and sexual col-

ours appear to have occurred independently on land and in
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the ocean. For example, there were numerous origins of
aposematic colouration among various clades of marine
invertebrates, including annelids, arthropods (crustaceans),
bryozoans, cnidarians, echinoderms, hemichordates, mol-
luscs (bivalves, cephalopods, and gastropods), and platyhel-
minths. Many origins of conspicuous, sexually dichromatic
colouration were among marine ray-finned fishes. Con-
versely, on land, there have been numerous recent origins
of both warning and sexual colour signals among terrestrial
arthropods and tetrapods. Thus, the recent burst of warning
and sexual signals may be uncoupled from the ascendance of
angiosperms on land.

We acknowledge the possibility that, given full knowledge
of colouration and its function among all extinct taxa, this
apparent burst of trait origins began earlier than 100 Mya.
However, incorporating available fossil information does
not suggest that origins of aposematic or sexual colours are
substantially older (i.e. a cockroach from 130 Mya with apo-
sematic colouration, and a dinosaur from 160 Mya with sex-
ual colouration, but the latter is highly speculative; see
Section III.4). Hypothetically, these increased recent origins
among living taxa might reflect recent increases in overall
animal species richness. Testing this may require a species-
level phylogeny of animals with the inferred timing of origin
of each trait on that tree, to compare to a simulated null
model of trait evolution. However, the necessary data are
currently lacking. On the other hand, while this null hypoth-
esis might explain why there are more recent origins than
older origins, it would not explain why there seem to be no
origins of aposematism or colourful sexual signals >160
Mya, in contrast to the hundreds in the past 100 Myr.

The second additional pattern is that we find that apose-
matic colouration is far more phylogenetically widespread
than colourful sexual signals are (Fig. 2). As one simple index
of this pattern, we found sexual colour signals to be present in
only two animal phyla whereas aposematic signals were pre-
sent in nine (Fig. 2). As another index, on our proportionally
sampled trees of animals, sexual colour signals were present
in 15 out of 1087 terminal taxa (mostly families) whereas
aposematism was present in 78 (using a conservative criterion
for coding) or 138 (using a more liberal criterion). Of course,
sexual colour signals are widespread in vertebrates, but verte-
brates represent <10% of animal species richness.

One explanation for this disparity is that sexual signals
based on colour require colour vision (obviously). By con-
trast, aposematism can evolve in lineages without colour
vision, or even without eyes at all. However, aposematism
(based on conspicuous colours) would seem to require that
potential predators have colour vision. On land, the recent
explosion of aposematism was likely related to major clades
of mostly diurnal, primarily arthropod and vertebrate-eating
tetrapods with colour vision: birds and squamates (specifi-
cally lizards). Much of the diversity of these two groups
evolved in the last 150 Myr (e.g. Jetz et al., 2012; Zheng &
Wiens, 2016). Importantly, these two groups also contain
most of the separate origins of colourful sexual signals in land
vertebrates (see Section III.4). Thus, the apparent explosion

of colour in animals on land may be related (at least in part)
to the diversification of these two groups specifically.

Similarly, in the ocean, the many recent origins of apose-
matism and sexual signals may both be related to ray-finned
fishes. Many ray-finned fishes have colour vision, and they
may be the major group that aposematic marine inverte-
brates have evolved to defend themselves against. Most
of the extant species diversity of ray-finned fishes seems
to have accumulated in the last ~100 Myr (Near
et al., 2012, 2013). Ray-finned fishes also seem to be dom-
inated by diurnal species: diurnal species generally pre-
dominate in tropical and temperate marine and
freshwater habitats (e.g. Helfman, 1978). Diurnal activity
may help explain why sexual colour signals are so wide-
spread in this group, whereas aposematism appears to be
relatively rare (Emberts & Wiens, 2022).

(3) Sensory-bias hypothesis

We speculate that the evolution of the different functions of
conspicuous colouration (fruit, flowers, sexual signals, warn-
ing signals) may involve sensory biases associated with one
function facilitating the evolution of other functions (Fig. 1).
Indeed this was a major motivation for our study and
the main hypotheses tested here (Fig. 1). The sensory-bias
hypothesis was initially proposed to help explain the evolu-
tion of mating signals (e.g. Basolo, 1990; Ryan &
Rand, 1990; Endler & Basolo, 1998). Our study is an exten-
sion of this idea applied more broadly to colour. For exam-
ple, if preference for brightly coloured males is explained
by a pre-existing bias for consuming brightly coloured fruit
(Rodd et al., 2002; Fernandez & Morris, 2007), then what
sensory bias (if any) was present for fruit to exploit? We find
that the answers are not necessarily straightforward, and that
the timescales involved are extremely deep (Fig. 3).

In some ways, our results are consistent with previous
hypotheses (Rodd et al., 2002; Fernandez & Morris, 2007)
in showing that conspicuously coloured fruit (sensu lato) may
have evolved long before the earliest origins of these sexual
colour signals (by ~100–200 Myr). On the other hand, some
results are inconsistent with this idea. Fruit is unlikely to help
explain the initial origin of colour vision in vertebrates, which
was likely in the ocean, and long before the evolution of fruit.
Similarly, the numerous origins of sexual colour signals in
marine fishes are presumably unrelated to fruit, as are the
many origins of these colours in the diverse non-frugivorous
lineages of birds and especially lizards. Lizards are generally
strictly carnivorous (80%) or omnivorous (15%) and very
rarely frugivorous (Meiri, 2018). Colour vision in arthropods
seems to pre-date the evolution of fruit, and arthropods (given
their size) seem unlikely to have been important dispersers of
seeds associated with colourful fleshy fruits. Some arthropods
consume fruit and some use colourful sexual signals, but it is
unclear how often these two traits co-occur. Another way to
think about these patterns is that sensory bias associated with
frugivory might have played a role in the evolution of sexual
signals in some cases (like primates), but this does not seem to
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be a general explanation that spans most arthropods or ver-
tebrates. However, we suspect that there may be other rela-
tionships between functions that are consistent with the
sensory-bias hypothesis.

V. CONCLUSIONS

(1) Plants and animals today display a dazzling diversity of
colours associated with four main functions: aposematism,
sexual signals, seed dispersal (fruit), and pollination (flowers).
These functions are made possible by colour vision in animals
that allows these conspicuous colours to be perceived. Here,
we have attempted to infer the possible first function of colour
vision and the general order in which these functions evolved.
(2) Our review suggests that colour vision (sensu lato) may
have evolved hundreds of millions of years before these func-
tions (~400–500Mya), followed by the evolution of colourful
fruits/seeds (~300 Mya), and then flowers (~200 Mya), and
then colourful aposematic and sexual signals (last ~150
Myr). However, the initial origins of colour vision, apose-
matic colouration, and sexual signals seem unlikely to be
associated with the evolution of fruit.
(3) We suggest that there was a relatively recent explosion in
all four functions in the last 100 million years. This explosion
includes more than 200 origins of aposematic colouration in
nine animal phyla and more than 100 origins of sexually
selected colouration in arthropods and chordates.
(4) We also show that warning signals are substantially more
widespread across animals than sexual signals.
(5) Our study represents an initial step towards understand-
ing how these different uses of conspicuous colours arose and
are related to one another. Fully understanding these pat-
terns will require further integration of ecology, evolution,
behaviour, phylogeny, neurophysiology, and palaeontology.
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